12 research outputs found

    Modular technology: a methodology for the creation of virtual environments in terrain driving simulators

    Get PDF
    This paper presents the latest research and developments in Modular Technology, a constructive methodology designed to create the environments of the virtual driving simulators of CITEF. Modular Technology discretizes the scene into a finite number of modules or portions of the environment, which after being instantiated and subjected to a series of geometric transformations using shaders, are meticulously assembled to reproduce the virtual scene. This tiling system has a set of particularities that make it different from the rest of tiling systems used up to now. These particularities are designed to get the maximum benefit of these type of virtual representations and can be summarized in four points: the shape of the module; the way in which the family is defined; the positioning system of these modules; and the deformation of these modules using shaders. In this way a substantial reduction in the number of geographical entities in the environment can be attained and an increase in the diversity and flexibility of the environment. There are many advantages to be had from this form of generation: savings in scene size, loading times and resource requirements, greater flexibility and clarity of the scene graph and a more substantial upgrade capacity of the nvironment. has a set of particularities that make it different from the rest of tiling systems used up to now. These particularities are designed to get the maximum benefit of these type of virtual representations and can be summarized in four points: the shape of the module; the way in which the family is defined; the positioning system of these modules; and the deformation of these modules using shaders. In this way a substantial reduction in the number of geographical entities in the environment can be attained and an increase in the diversity and flexibility of the environment. There are many advantages to be had from this form of generation: savings in scene size, loading times and resource requirements, greater flexibility and clarity of the scene graph and a more substantial upgrade capacity of the environment

    Methodologies for Designing and Developing New Concepts in Vertical Transportation

    Full text link
    Escalator and moving walkway are multibody systems with a design of more than a century. Developed methodology allows studying and improving any subsystem of both systems. In addition, new concepts can be developed and tested without the necessity and cost of a real construction. CITEF (Railway Technologies Research Centre) has been modelling escalators for more than four years. Several complex and innovative models has been developed to characterize static, kinematic and dynamic escalator behaviour. The high number of mechanical elements that are part of escalators complicate modelling task. In this way, methodologies and tools have been developed in order to automate these task and saving computational and time costs. Developed methodologies have been validated with the results of comparing real measurements and simulated outputs from a dynamic model

    Methodology for Flexible Modeling of Escalator Multibody Systems

    Full text link
    This paper presents some particular escalator modelling features and methodologies developed to dramatically reduce time cost regarding two aspects: computation and implementation. CITEF (Railway Technologies Research Centre) has been modelling escalators for three years. During this time, several static, kinematic and dynamic escalator models have been developed and improved. In parallel, automation tools mainly intended for saving time cost have been described in a piecemeal fashion. These tools are based on the repetitiveness of the bodies, and a definition of the joints, forces and loops, and on the cyclic movement of most of the bodies involved. In addition, noise signals have been programmed from MATLAB to simulate them in SIMPACK software in order to apply robust design methods for studying and optimizing certain parameters

    Simulación y modelización de las escaleras mecánicas como vía para la mejora del confort de los pasajeros y la disminución de costes

    Get PDF
    La escalera mecánica lleva más de un siglo entre nosotros, sin apenas variar su diseño de forma notoria. La simulación mecánica de este sistema multicuerpo, asignatura pendiente en la actualidad, ahorrará tiempo y dinero frente a los experimentos tradicionales. En esta línea, CITEF está desarrollando una serie herramientas de mejora del diseño basadas en modelos estáticos, cinemáticos y dinámicos para la simulación del comportamiento de la escalera mecánica convencional así como para el desarrollo y análisis de nuevos diseños. Estas herramientas permitirán el estudio de variables como son la velocidad y la aceleración del peldaño, así como los valores de tensión de la cadena y de reacción de los rodillos. Con los resultados obtenidos se podrán inferir mejoras que supongan una disminución del coste del conjunto de la escalera y del coste de mantenimiento, así como un aumento del confort del usuario

    Methods for Improving Escalators

    Get PDF
    This paper presents several methods to search for improvements in escalator design. Escalators were invented more than a century ago. During this time several features have been developed although most of them have not show nany clear advantage over the conventional device. This mechanism is becoming a "commodity" product.C1TEF is using tools to simulate and to analyze the static, kinematic and dynamic behavior of this multibody system. We have used MATLAB, CATIA and SIMPACK software. In addition, a life prediction model based on dynamic results has been developed

    Metodi per migliorare le scale mobili = Methods for improving escalators

    Full text link
    This paper presents several methods to search for improvements in escalator design. Escalators were invented more than a century ago. During this time several features have been developed although most of them have not shown any clear advantage over the conventional device. This mechanism is becoming a ¿commodity¿ product. CITEF is using tools to simulate and to analyze the static, kinematic and dynamic behaviour of this multibody system. We have used MATLAB, CATIA and SIMPACK software. In addition, a life prediction model based on dynamic results has been developed

    Methoden zur Verbesserung von Fahrtreppen

    Full text link
    This paper presents several methods to search for improvements in escalator design. Escalators were invented more than a century ago. During this time several features have been developed although most of them have not shown any clear advantage over the conventional device. This mechanism is becoming a ¿commodity¿ product. CITEF is using tools to simulate and to analyze the static, kinematic and dynamic behaviour of this multibody system. We have used MATLAB, CATIA and SIMPACK software. In addition, a life prediction model based on dynamic results has been developed

    Mejora de un diseño de más de 100 años. Nuevos conceptos en escaleras mecánicas

    Full text link
    El presente trabajo persigue la mejora e innovación en el diseño de las escaleras mecánicas, cuya arquitectura básica lleva más de un siglo funcionando con tecnologías electromecánicas alcanzables por todos los fabricantes. Durante este tiempo, se han ido haciendo mejoras continuas en los diversos aspectos de las escaleras móviles aunque ningún sistema patentado posteriormente presenta ventajas claras frente al inicial, Cien años con una arquitectura funcionando sin cambios novedosos hace que este producto se esté convirtiendo en un “commodity”. El CITEF empleará herramientas que permitan simular y analizar el comportamiento estático, cinemático y dinámico de un sistema multicuerpo de este tipo. Se emplearán herramientas tales como MATLAB, CATIA y SIMPACK. Adicionalmente, se desarrollará un modelo de predicción de vida basado en los resultados dinámicos

    Escalera Mecánica

    Full text link
    Escalera mecánica, que comprende un sinfín de peldaños (1) que van montados sobre dos cadenas laterales de arrastre (2-3) y guías conductoras (4-5) y quedan limitados entre balaustradas laterales fijas. Cada peldaño está soportado por dos brazos (7-8) no alineados, que son perpendiculares a la dirección de desplazamiento de dichos peldaños y paralelos a las superficies pisables de los mismos. Estos brazos sobresalen de los peldaños, uno por cada lado, para su conexión a puntos de articulación (9- 10) de las cadenas, coincidentes con el peldaño

    Sistema de accionamiento de una cadena de arrastre

    Full text link
    Sistema de accionamiento de una cadena de arrastre, que comprende: una cadena (8) que incluye eslabones (A, B, C, D) unidos por articulaciones (1, 2, 3, 4, 5); una rueda (6) que incluye medios de engranaje con las articulaciones (1, 2, 3, 4, 5), distribuidos de forma uniforme en la periferia de la rueda (6) y medios de guía aptos para forzar la trayectoria de las articulaciones (1, 2, 3, 4, 5) a lo largo de una curva de tal manera que cuando la rueda (6) gira a velocidad angular constante la cadena (8) avanza con velocidad lineal constante en al menos una de las dos zonas lineales de ida o de vuelta en las que no está engranada con la rueda (6)
    corecore